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Effective material properties for shear-horizontal acoustic waves in fiber composites
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The effective dynamic properties of composites made of elastic cylindrical fibers randomly distributed in
another elastic solid can be evaluated with plane shear-horizontal acoustic waves. In this paper, it is shown that
the effective mass density and the effective shear stiffness are complex valued and frequency dependent.
Simple formulas are derived for these effective quantities. The low-frequency limit of these formulas is found
to be in agreement with physical expectations. The derivation is based on the multiple-scattering approach of
Waterman and Truell, where each cylinder of finite cross section is replaced with an equivalent line scatterer.
Numerical results are presented for the effective mass density and effective shear stiffness for various values of
frequency, cylinder concentration, and elastic properties of the cylinders and matrix.
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I. INTRODUCTION

Ultrasound techniques are used to investigate materials
with internal microstructures, such as reinforced composites
[1-3] and adhesive polymers [4], and their average response
is measured. The response is propagative if the microstruc-
ture is not too dense, and diffusive otherwise, where the den-
sity of the microstructure is determined by the ratio of the
elastic mean free path in the material to the dominant wave-
length in the probing signal.

The averaging that is mentioned above takes place over
the disorder of the microstructure, so that the probing signal
“sees” an effectively homogeneous material. This is an
equivalent material from the viewpoint of wave propagation.
The part of the motion that resists disorder after averaging
over all possible configurations of fibers is the coherent mo-
tion. It has been shown elsewhere that the coherent motion
makes each composite appear as a dissipative material, and
propagation is governed by a complex-valued effective wave
number that is frequency dependent. The imaginary part of
this wave number is the attenuation.

Models have been proposed to predict the phase velocity
and attenuation of effective plane waves in two-phase media
[2-8], and to predict their effective mass density and elastic
stiffness [1,9-15]. In these models, expressions for the effec-
tive mass density are assumed a priori [2,6,16], or else the
scope of the work is restricted to the low-frequency limit
[10,14].

This raises the question of whether better models can be
constructed by eliminating a priori assumptions. To illustrate
our point, we consider here the multiple-scattering approach
proposed by Waterman and Truell [5], which is known to be
valid for dilute distributions of scatterers. These authors have
predicted the effective wave number of the coherent wave in
a semi-infinite material [17]. Their expression depends on
the far-field scattering properties, in the forward and back-
ward directions, of a single scatterer.

Using the framework of Waterman and Truell, we have
determined analytically the system of coherent waves that
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propagate inside and outside a layer of finite thickness
[7,8,18,19]. The lossless scatterers are distributed uniformly
and randomly inside the layer and are embedded in an elastic
material. Thus, energy dissipation is induced only by mul-
tiple scattering, and no anelastic attenuation is present. To
obtain our results, we have made no continuity assumption
on the “boundaries” of the layer. We have obtained for the
effective wave number K the same expression as that of Wa-
terman and Truell, who considered a semi-infinite region. In
our case, K describes propagation inside a finite-width layer.

In this paper, we show that both the effective mass density
p and the effective shear stiffness M corresponding to shear-
horizontal (SH) plane waves can be determined without fur-
ther assumptions beyond those already contained in the ap-
proach of Waterman and Truell. To determine p and M, we
need two equations.

First, we assume that the effective stress-strain response
of the equivalent material is identical in form to that of an
elastic solid subjected to SH wave motions. This allows us to
write the dispersion equation that relates p, M, K, and the
angular frequency w of a harmonic excitation.

The second relation is obtained by comparing the re-
sponse of the layer containing scatterers [7,8,18,19] with that
of a homogeneous layer. The latter is well known in acous-
tics. Comparing these two approaches, we are able to iden-
tify the effective acoustic impedance of the layer.

Background results are presented in Secs. II and III. The
formulas for the effective mass density and effective shear
stiffness corresponding to SH plane motions are established
in Sec. I'V. Using these formulas, we perform numerical cal-
culations, which are presented in Figs. 2-5 and discussed in
Sec. V. The low-frequency limits of the formulas for p and M
are obtained in Sec. VI. Concluding remarks are collected in
Sec. VIIL. In particular, we comment on the importance of our
analytical results for the accuracy of experimental measure-
ments.

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.75.056607

CHRISTOPHE ARISTEGUI AND YVES C. ANGEL

oh u, l » T u yl>
vy3

@yz t

FIG. 1. Schematic diagram of SH waves propagating inside and
outside a layer of thickness 2A. The propagation vectors are in the
y3 direction. The particle displacements are in the y, direction.

II. PROBLEM STATEMENT

We consider a two-phase composite, where solid cylin-
ders of radius a are distributed randomly and uniformly in a
solid matrix that occupies the entire three-dimensional space.
The cylinders and the matrix are made of linearly elastic and
isotropic solids. Each cylinder has an axis of revolution that
is parallel to the y, axis, as shown in Fig. 1.

Let a time-harmonic plane SH wave propagate in the
matrix—without cylinders—along the y; direction. For sim-
plicity, the time factor e~*' will be omitted in the following.
The displacement components associated with this wave
have the form

M1=u3=0, M2=u0€ik0’v3, (1)
where ky=w/cy is the wave number, w the angular fre-
quency, ¢ the transverse wave speed in the matrix, and u, an
amplitude factor.

When the wave (1) propagates in the cylinder-matrix
composite, multiple scattering occurs. Then one observes ei-
ther propagation or diffusion, or a combination of the two—
depending on the frequency as well as on the geometrical
and material properties of the composite [17].

Assuming that propagation occurs, one can describe the
coherent wave motion in the composite by a complex-valued
wave number K. This wave number has been evaluated ana-
lytically [20]. In the system of axes of Fig. 1, the coherent
wave is represented by the displacement components

uy=us=0, uy=Ae™3, (2)
where A is an amplitude factor.

In Eq. (1), the displacement component u, satisfies the
equation of motion

Puy  Pu
Po o = Mo (9}’% > (3)
where p, and M0=poc(2) are, respectively, the mass density and
the shear modulus of the matrix. In Eq. (2), K is the effective
wave number that governs SH wave propagation in the
cylinder-matrix composite. The equation of motion for the
effective material, by analogy with (3), has the form
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dz Uy dz U
p—a =M—7,
ot a3
where u, is the displacement component of the coherent
wave in the y, direction, p the effective mass density, and M

the effective shear stiffness. Substituting (2) into (4), one
finds that

(4)

— =M. (5)

Observe that M relates linearly the effective stress compo-
nent o,3 to the effective strain component e,3=du,/dys. In
the dispersion equation (5), w and K are known. Thus, p and
M are two unknowns. Next, we determine these two un-
knowns.

III. COMPOSITE LAYER

We consider a slab of thickness 24 made of the cylinder-
matrix composite of Sec. II. The layer occupies the region of
space |ys| <h, as shown in Fig. 1. The regions y;>h and
y3<—h outside the layer are occupied by the matrix only. We
denote by n, the number of cylindrical cross sections per unit
area in the plane of the figure. Each cylinder is represented as
an equivalent anisotropic linelike scatterer that lies in the y,
direction.

When the plane SH wave of Eq. (1) is normally incident
on the layer, one finds that a system of plane SH coherent
waves propagate in the entire space. Because of the transla-
tional invariance of the geometry and excitation, the coherent
displacement has one component in the y, direction, which is
given by

upe™ 03 + yyRe *0v3, y3<-h, (6)
uy(y3) = | oA ™3 + upA_e™3, [y <h, (7)
ugTe s, y3 > h. (8)

Equations (6)—(8) show that a wave of amplitude R is re-
flected into the region y;<-h, and a wave of amplitude T is
transmitted into the other side of the layer, where y;>h.
Inside the layer, two waves of amplitudes A_ and A, respec-
tively, propagate in the backward and forward directions. We
have found, by using the approach of Waterman and Truell
without further assumptions, that [8,18,19]

- .
T= #zfim Q2iK~ko)h (10)
A =— %ei(ﬂ(—ko)h’ (11)
A= % i (K=koh (12)

In Egs. (9)-(12), one has
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In Egs. (13) and (15), f(0) and f(7) stand for the far-field
amplitudes scattered by a single cylinder in the forward (6
=0) and backward (6=) directions, respectively.

The results (9)—(15) are obtained as direct consequences
of the Waterman and Truell approach for multiple scattering
[5]. In that approach, no assumptions are made concerning
the effective mass density and shear stiffness of the cylinder-
matrix composite. Nor are continuity conditions written on
the “interfaces” y;=+h between the layer and the matrix.

Next, we consider a homogenous layer made of a linearly
elastic solid with isotropy properties in the (y;,y;) plane and
mass density p;,. Let the layer occupy the region |y;| <h of
Fig. 1 between two half spaces of the matrix material. Then,
when the time-harmonic plane SH wave of Eq. (1) is incident
on the layer, one finds a system of plane waves as in Egs.
(6)—(12), provided that the factor Q and the effective wave
number K be replaced, respectively, with

k k
0=|1-"2" 12500 koK (16)
poky, poky,

where k;, is the wave number inside the homogeneous layer.

The results (9)—(12), combined with (16), are well known
in acoustics. They are obtained by writing continuity of dis-
placement and shear stress at the interfaces y;=+h. We ob-
serve that p,kq/ pok;, is the ratio of the acoustic impedance of
the homogeneous layer to that of the lossless surrounding
solid.

IV. EFFECTIVE MASS DENSITY AND SHEAR STIFFNESS

In view of the preceding discussion, we define the effec-
tive solid corresponding to the cylinder-matrix composite as
follows. It is the homogeneous solid of mass density p where
coherent SH waves propagate with the wave number K of
Eq. (13). Thus, we infer from (14) and (16) that

ok
poK
where O is given by (15). It follows from (15) and (17) that

=0, (17)

p=p(1+ggﬂuan+ﬂwn) (18)
0

Then, substituting (13) and (18) into the dispersion equation
(5), one finds that
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-1
2@%ﬂm—ﬂm0 . (19)
ko

M=M0(1+

Equations (18) and (19) are the main results of this paper.
Since the far-field scattering amplitude f(6) is complex val-
ued in general, we infer from (18) and (19), respectively, that
the effective mass density and the effective shear stiffness
are complex valued. Both are also frequency dependent.

We recall that complex-valued mass densities are used to
represent wave propagation in porous media [21], and
complex-valued stiffnesses are associated with wave attenu-
ation in viscoelastic solids.

Isotropic scattering corresponds to the particular situation
where the amplitude of the far-field motion scattered by each
cylinder is constant in all directions. Thus, one has f(0)
=f() [8,22], and it follows from (19) that

M= Mo- (20)

Equation (20) shows that the shear stiffness of the composite
is equal to that of the matrix for isotropic scattering.

V. CYLINDRICAL CAVITIES AND FIBERS

In this section, we present numerical results correspond-
ing to the effective mass density given by (18) and to the
effective shear stiffness given by (19). We consider first the
case of empty cylindrical cavities and then the case of cylin-
drical fibers made of an isotropic linearly elastic solid. In
either case, the matrix is made of an isotropic linearly elastic
solid. The mass densities, shear moduli, and transverse sound
speeds of the matrix and fibers, respectively, are denoted
Po»Mo>Co and py, uy,cq. The empty cylindrical cavities can
be viewed as fibers of mass density p; =0 and shear modulus
#1=0.

We recall that the far-field scattering amplitude f(6) cor-
responding to a plane time-harmonic SH wave of frequency
w incident on a cylindrical scatterer is given by

f(0) =~ &,C, cos(nd). 21)
LT =0

In Eq. (21), the angle @ is measured from the positive y;
direction of Fig. 1, and ¢, denotes the Neumann factor,
which is such that gy=1 and g,=2 for n=1.

The coefficients C, describe the scattering properties of
the cylinder. They depend on the frequency and cylinder ra-
dius, as well as on the material properties of the cylinder and
those of the surrounding solid. To evaluate these coefficients,
we write continuity conditions on the cylinder surface. The
stress component 0,3 is continuous, and so is the displace-
ment component u, (in the case of a solid cylinder). When
the scatterer is a cylindrical cavity, the displacement u, on
the cavity surface is not subjected to a continuity condition.

The scattering coefficients C, corresponding to SH waves
are given in the Appendix in terms of the dimensionless fre-
quency

0= koa . (22)

Figure 2 shows the real and imaginary parts of p/p, in a
solid containing empty cylindrical cavities. The frequency ®
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FIG. 2. Real and imaginary parts of the effective mass density
plpy (=p’+ip") for empty cylindrical cavities in an elastic solid
versus the dimensionless frequency @ for three concentrations .

varies from 0 to 10 along the horizontal axis, which means
that the incident wavelength \y=2m/k, takes values between
approximately 0.6a and o°.

The curves in Fig. 2 correspond to three values of the
surface concentration ¢=nya’*m=3.14%, 9.42%, and
15.71%. We observe that, for a close-packed cylinder ar-
rangement, the concentration ¢ is equal to 7/4, which gives
a percentage value of 78.5%.

The imaginary part of p/p, takes values less than 0.08,
and is much smaller than the real part, which is close to
unity. We see that the two curves display cyclic variations
with maxima and minima that are independent of ¢. When ¢
increases, Im(p/p,) increases for each given value of @, and
Re(p/py) decreases in the range 0 <@®< 1.5 approximately.

Beyond @==1.5, the real part of p/p, oscillates and, at
some frequencies, takes values that are greater than 1. At
those frequencies, the solid containing holes appears heavier
than the solid without holes. This is an unexpected result,
which suggests that the holes behave as though they were
filled with a solid of mass density higher than p,. Alterna-
tively, the solid matrix behaves as though it had a mass den-
sity higher than p,,.
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FIG. 3. Real and imaginary parts of the effective shear stiffness

M/ o (=M’ —iM") for empty cylindrical cavities in an elastic solid
versus the dimensionless frequency @ for three concentrations ¢.

If the curves of Fig. 2 were continued beyond @=10,
toward higher frequencies, it appears that Re(p/p,) would
approach 1 and Im(p/p,) would approach zero. Thus, in this
limit, the effective mass density is that of the solid matrix.

Figure 3 shows the real and imaginary parts of M/, in a
solid containing empty cylindrical cavities. The frequency @
and the concentration ¢ are as in Fig. 2.

The imaginary part of M/ u, takes values less than 0.05,
and the real part of M/, varies between 0.75 and 1. The
two curves display cyclic variations. There are some fre-
quencies at which Re(M/ uy) is greater than 1, which indi-
cates that the solid with holes can be stiffer than the solid
without holes.

Figure 4 shows the real and imaginary parts of p/p, in a
solid containing elastic fibers. The frequency w varies on the
horizontal axis as in Figs. 2 and 3. The concentration ¢ is
fixed and equal to 15.71%. Each curve corresponds to a fixed
value of the ratio w=pm,/pny which is also equal to
pici/ pocs. Values of w in the figure are 0.25, 0.5, 2/3, 1.5, 2,
and 4. To simplify this parametric study, the transverse
speeds have been chosen such that cy=c;. The figure is in-

tended to illustrate the variations of Re(p/p,) and those of
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FIG. 4. Real and imaginary parts of the effective mass density
plpy (=p’ +ip”) for elastic circular cylinders in elastic solids versus
the dimensionless frequency & for various stiffness ratios w. ¢
=15.71% and cy=c;.

Im(p/ py) in terms of the parameter u when the speeds ¢, and
c, are close. For example, if we take a steel matrix and
aluminum fibers, then we find ©=0.31. With an aluminum
matrix and steel fibers, we find u=3.19. Observe that the
transverse speeds in steel and aluminum are close to
3200 m/s. We see that, for @ greater than 2, Re(p/p,) and
Im(p/py) are rather insensitive to variations of w. Im(p/p,)
approaches 0.3 at @=0.6 for the highest value of w (u=4).
We observe also that Re(p/ py) becomes larger than 1 at low
frequencies @ when w increases past 1. This is an expected
result from a static point of view. It is not expected, however,
that, at frequencies @ greater than 2, Re(p/p,) becomes
larger than 1 for values of u less than 1. Indeed, in these
circumstances, the fibers are lighter than the matrix.

Figure 5 shows the real and imaginary parts of M/ u, in a
solid containing elastic fibers. The frequency @, the concen-
tration ¢, and the ratio w are as in Fig. 4. Im(M/ ;) is less
than 0.05 for all values of @ and w.

At low frequency, Re(M/u,) increases with w and be-
comes greater than 1 when u increases past 1. Im(M/ ;)
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FIG. 5. Real and imaginary parts of the effective shear stiffness

M/ py (=M'—iM") for elastic circular cylinders in elastic solids
versus the dimensionless frequency @ for various stiffness ratios .
¢=15.71% and cy=c;.

vanishes in the limit of low frequency for all values of . For
values of @ greater than 2, Re(M/ u,) is rather insensitive to
variations of u, and oscillates around 1. We find values of
Re(M/ u) greater than 1, even when u is less than 1. Con-
versely, we find values of Re(M/ u,) less than 1, even when
M is greater than 1.

If the curves were continued past @=10, it appears that
Re(M/ ) would approach 1 and Im(M/ uy) would approach
zero. This would be true for all values of w. Thus, at high

frequency, the stiffness of the composite approaches that of
the matrix.

VI. LOW-FREQUENCY LIMIT

We find here the low-frequency limit of the effective mass
density of Eq. (18) and that of the effective shear stiffness of
Eq. (19). In the limit as @ approaches zero, the scattering
coefficients C, given in (A3) are such that

Co(@) = i%(ﬂ - 1)5)2+ o(a@"),

(23)
Po
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C\(&) = i%(%)&z +0(&Y), (24)
0 1
Ci(@)=0(a", j=2. (25)

Then, using (23)-(25), one infers from (18) and (21) that the
effective mass density p has the form

p=po+ d(py—py) (&—0). (26)

Equation (26) shows that in the static limit the effective mass
density satisfies the mixture rule.

Next, using (23)—(25), one infers from (19) and (21) that
the effective shear stiffness has the form

Mo

1+2¢<MO—M1>
Mo+ g

M= (@—0). (27)

For empty cylindrical cavities, where p;=0 and w;=0, one
finds that

p=(1-¢)p, (@—0), (28)
_ & ~
_1+2¢ (@w—0). (29)

Equations (26) and (27) show that p and M are real valued in
the static limit, as expected. Equation (27) shows that M is
greater than uy when w;> g, less than pg when w; <y,
and equal to wy when u; = . In the particular case of empty
cavities, we see from (28) and (29), respectively, that p and
M decrease when the concentration ¢ increases. These re-
sults are expected on physical grounds.

Using the simple scattering approach proposed by Kuster
and Toksdz [10]—as opposed to the multiple-scattering ap-
proach of this paper—we find that the effective stiffness in
the low-frequency limit is given by

_M (o + p1) = dlpo — 1)
= Mo
(o + m1) + dlpo — p1)
The result (30) is identical to that obtained on the basis of the
composite cylinder assemblage model [23,24].

Using a self-consistent scheme [13], one finds that the
low-frequency limit of the effective stiffness is given by

(@—0). (30)

M=%{1—u+2¢<u—1)

V4 +[1-p+2¢(u-DP} (@—0), (1)

where u=pu,/ uy. We note that in Eq. (27) of Ref. [13], the
quantity 2u, on the right-hand side should be replaced with

M2

In the dilute case (¢p<<1), all three formulas (27), (30),
and (31) are identical to within terms of O(¢?). The result is
M _
= —2<M>¢+ 0(¢) (—0and ¢— 0).
Mo Mo+ Mg

(32)
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FIG. 6. Modulus of the reflection coefficient versus the fre-
quency for a semi-infinite sample of a boron-epoxy composite. The
radius and concentration of the boron fibers are 50 um and 9.42%,
respectively. The reflection coefficient is R=—0Q, where Q is given
by (14) and (17). In (17), ®=pky/pyK. Solid line: p is given by
(18). Dashed line: p is given by the mixture law (26). p,
=1261 kg/m?3, p;=2682 kg/m>, uy=1.8 GPa, and u,;=161 GPa.

In the case of isotropic scattering, all scattering coeffi-
cients in (21) must vanish, except C,. Thus, in the low-
frequency limit, we see from (23)—(25) that scattering is iso-
tropic to within terms of O(@*) when wuy=pu,. Then, from
(27), M =y, which agrees with (20).

VII. CONCLUSION

Complex-valued frequency-dependent analytical formulas
have been obtained for the effective mass density and effec-
tive shear stiffness of an elastic solid containing cylindrical
fibers or cavities.

Our derivation is based on the multiple-scattering analysis
of the problem proposed by Waterman and Truell. It yields
formulas for the effective properties that depend on cylinder
concentration and radius, and frequency, as well as on the
forward and backward far-field scattered amplitudes corre-
sponding to a single cylinder or cavity.

The formulas predict that the numerical values of the
imaginary parts are much less than those of the real parts.
The former should not be ignored, however, in an analysis of
the multiple-scattering problem. For example, it would not
be correct to assume that the effective mass density is real
valued and given by the law of mixture at any frequency.
Only in the low-frequency limit does the mass density for-
mula reduce to that corresponding to the law of mixtures.
Also, our formula for the shear stiffness agrees with those
obtained elsewhere, in the low-frequency and low-scatterer-
concentration limits.

Figure 6 illustrates the importance of using a complex-
valued frequency-dependent mass density as in (18). This
figure represents the modulus of the reflection coefficient for
an epoxy matrix and boron fibers of concentration ¢
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=9.42%. The boron fibers are distributed in a semi-infinite
space. In Fig. 6, the solid line is obtained by using the mass
density (18), and the dashed line by using the mass density
(26). We see that the two curves differ greatly from each
other. This suggests to us that serious errors can result from
using inappropriate expressions to model the effective mass
density in experimental approaches.

Comparing our Egs.(18) and (19), corresponding to SH
waves, to those of Ref. [15], where P wave motions are
investigated, we see that the effective material properties de-
pend on the type of excitation. In each case, one has to solve
a new multiple-scattering problem in order to infer the effec-
tive properties.

The effective acoustic impedance Z (=pw/K) can be de-
rived from (13) and (18). With Z, one can describe wave
propagation inside and outside the two-phase layer of Fig. 1
by keeping track of the successive internal reflections on the
boundaries of the equivalent homogeneous layer. There is an
infinite number of reflections, which yields the reflection and
transmission coefficients in the form of two infinite series. It
is easy to interpret physically each term in the series. The

PHYSICAL REVIEW E 75, 056607 (2007)

two series converge, respectively, to the expressions (9) and
(10), together with (13), (14), and (17). In electromagnetism,
this is known as the Fabry-Pérot effect.

With the results of this paper, one can envision an ap-
proach to determine experimentally the phase velocity ¢ and
attenuation « of the coherent wave propagating inside a plate
with internal microstructures. This is a problem of practical
interest. We recall here that the reflection R and transmission
T in (9) and (10) depend on two complex-valued quantities:
the effective wave number K=w/c+ia and the effective
mass density p. Thus, to determine ¢ and «, one needs both
R and T, unless one is willing to make an a priori assump-
tion about the effective mass density.

APPENDIX: SCATTERING COEFFICIENTS

The scattering coefficients C, for a single cylinder of ra-
dius a subjected to a SH wave are given in the following.
The cylinder and the matrix are made of isotropic elastic
solids. In the coordinate system of Fig. 1, the particle dis-
placements are

(E 8nArz‘]rz(k()r)cos(’/l 0) + 2 SnAnC11H1(11>(k0r)COS(n 0))_)72 (r > (1) > (Al)

n=0 n=0

uy(r,6,w) = "
(2 snAanJ,xklr)cos(ne))yz

n=0

(r<a), (A2)

where y, represents a unit vector in the y, direction, (r, #) are the polar coordinates of the particle with origin located on the

axis of the cylinder, and J,, and H;l)

represent Bessel and Hankel functions of the first kind, respectively. The coefficients A,,

are those in the Bessel expansion of the incident displacement of (1) and are given by A, =ui".

In Eq. (Al), the first term corresponds to the incident wave and the second term represents the scattered wave emanating
from the cylinder. The coefficients A,, A,B,, and A,C, represent amplitude factors. Imposing continuity of shear stress and
out-of-plane displacement on the boundary of the cylinder of radius a, we find that the scattering coefficients have the form

1 2 )00 @ = -

&K*,n(&;)|:]n—l<§> _‘In+l(§)j|
Po K K

C,=-

In Eq. (A3), one has @=koa and k=c,/c,.

Jn(é)mil_n(a) -~ HY\(@)] - ﬂKHi”@{J”-'(a) ‘*”'(é)J
K Po “

(A3)

K

In the case of an empty cylindrical cavity, the coefficients C,, are also given by Eq. (A3), where p;=0. Observe that, with
p1=0 in (A3), the J, terms cancel out in the numerator and denominator. One finds the same answer by solving the cavity
problem, with no boundary condition imposed on the displacement.
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